JOURNAL OF APPROXIMATION THEORY 20, 278–283 (1977)

Determining Sets and Korovkin Sets on the Circle

MICHAEL D. RUSK*

Department of Mathematics, University of Redlands, Redlands, California 92373

Communicated by Oved Shisha

Received October 14, 1975

In this paper we investigate properties of a subspace X spanned by a Chebyshev system on the circle. In particular we show that the set of operators for which X is a positive operator Korovkin set is equivalent to the set of operators for which X is a determining set. These results are obtained by applying uniqueness properties of the moment problem.

Let C = C(T) be the Banach space of real-valued continuous functions on the circle T with the uniform norm. We denote by $\mathscr{B}(C)$ the space of all bounded linear operators on C. Let C^* be the space of all bounded linear functionals on C. For an operator S in $\mathscr{B}(C)$ let S^* be the dual operator defined on C^* . For a point p in T, let \hat{p} denote the functional in C^* given by evaluation at the point p. Suppose g is a function on a set A containing the set B. Then g_{-B} is the restriction of g to B.

We define \mathscr{T}_{+} to be the cone of positive linear operators in $\mathscr{M}(C)$; i.e., $S \in \mathscr{T}_{+}$ if $f \geq 0$ implies $Sf \geq 0$. We say that a subspace X of C is a \mathscr{T}_{+} determining set for an operator S in \mathscr{T}_{+} if for any R in \mathscr{T}_{-} the equality Rf = Sf for all f in X implies R = S. This concept was introduced by Shashkin [10]. We say that X is a \mathscr{T}_{+} -Korovkin set for an operator S in \mathscr{T}_{-} if for any sequence $\{S_n\}$ in \mathscr{T}_{-} the convergence of $S_n f$ to Sf in the uniform norm for all f in X implies the convergence of $S_n f$ to Sf for all f in C. Korovkin sets of this type have been investigated by Micchelli [7, 8], Cavaretta [1], and the author [9]. Let \mathscr{L}_{+} be the cone of positive functionals in C^* ; i.e., $\mu \in \mathscr{L}_{-}$ if f = 0 implies $\mu(f) \geq 0$. The corresponding concepts of an \mathscr{L}_{-} -determining set and an \mathscr{L}_{-} -Korovkin set for positive functionals are defined in the obvious way.

Let X in C be the linear span of a fixed but arbitrary $(2m \pm 1)$ -dimensional Chebyshev system $\{u_0, u_1, ..., u_{2m}\}$. Let K be the positive cone in X*. Define

^{*} This paper is an extension of results included in the author's doctoral dissertation written under the supervision of Professor L. B. O. Ferguson.

 $M = \{\hat{p} \mid x : p \in T\}$. Clearly, $M \subseteq K$. In fact, for each τ in K there exists an integer $1 \leq n \leq 2m + 1$ such that

$$\tau = \sum_{i=1}^{n} \alpha_i \hat{p}_i \Big|_{X} \quad \text{where} \quad \alpha_i \ge 0 \quad \text{and} \quad p_i \in T \quad (1 \le i \le n).$$
 (1)

We denote the smallest possible *n* for which (1) holds by $I(\tau)$. If μ is a functional in \mathscr{L}_{\perp} with exactly *n* points in its support or carrier, then we denote *n* by $I(\mu)$.

The following is our main result.

THEOREM 1. Let R be an operator in \mathcal{T}_{\perp} . The following are equivalent:

- (i) X is a \mathcal{T}_+ -Korovkin set for R,
- (ii) X is a \mathcal{T}_- -determining set for R,
- (iii) for each p in T, we have $I(R^*\hat{p}) \leq m$.

First we note that the implication (i) \rightarrow (ii) follows easily from the observation that if $S_x = R \mid_X$ for some operator S in \mathscr{T}_+ then a sequence $\{S_n\}$ in $\mathscr{T}_$ is constructed by defining $S_n = S$ for all $n \ge 1$. The implications (ii) \rightarrow (iii) and (iii) \rightarrow (i) will follow directly from Lemma 6 and Lemma 5, respectively.

Theorem 1 also holds when the circle T is replaced by a closed interval [a, b] of the real line. This result is due to the author [9]. However, the present setting appears to be more appropriate because a more concise theorem and proof are possible.

We use the following two results. The first characterizes Korovkin sets (see Micchelli [7] or Ferguson [3]). The second (see Karlin and Studden [5, p. 181]) gives conditions under which the moment problem has a unique solution.

THEOREM 2. For a functional μ in \mathcal{L}_{\pm} , a subspace X is an \mathcal{L}_{\pm} -Korovkin set for μ if and only if X is a \mathcal{L}_{\pm} -determining set for μ . For an operator R in \mathcal{T}_{\pm} , a subspace X is a \mathcal{T}_{\pm} -Korovkin set for R if and only if X is a \mathcal{T}_{\pm} -determining set for \mathbb{R}^*p for each p in T.

THEOREM 3. A functional τ in K is a boundary point of K if and only if $I(\tau) \leq m$. Furthermore, each boundary point admits only one representation (1). Similarly, for each interior point of K and any t in T there exists a unique representation (1) such that n = m + 1 and t is in the support.

The following two lemmas parallel Micchelli's results [7] for continuous functions on a compact interval of the real line.

LEMMA 4. The subspace X is an \mathcal{L}_4 -Korovkin set for μ in \mathcal{L}_4 if and only if $I(\mu) \leq m$.

Proof. Suppose X is an \mathcal{L}_1 -Korovkin set for μ . By Theorem 2. X is an \mathcal{L}_1 -determining set for μ . If μ_{X} is an interior point of K, then for each t in T there exists a representation (1) with t in the support. However, these representations would not all have the same extension to C. This is a contradiction. Therefore μ_{X} is a boundary point of K. By Theorem 3, $I(\mu) = m$.

Conversely, suppose $I(\mu) \leq m$. By Theorem 3, μ_{-x} is a boundary point of K and μ_{-x}^{+} admits a unique representation (1). Suppose there exists τ in \mathscr{L} such that $\tau_{-x}^{+} = \mu_{-x}^{+}$, but $\tau(g) \neq \mu(g)$ for some g in C. There exists (see Holmes [4, p. 84]) $\alpha_i \simeq 0$ and p_i in $T, 1 \leq i \leq m + 1$ such that for

$$\sigma = \sum_{i=1}^{m+1} \chi_i \hat{p}_i \tag{2}$$

we have $\sigma|_X = \tau|_X = \mu|_X$, but $\sigma(g) = \tau(g) \neq \mu(g)$. This contradicts the uniqueness of representation (1). Therefore, X is a \mathcal{L}_+ -determining set for μ . By Theorem 2, X is a \mathcal{L}_+ -Korovkin set for μ . The lemma is proved.

LEMMA 5. The subspace X is a \mathcal{T}_{+} -Korovkin set for an operator R in \mathcal{T}_{-} if and only if for each p in T we have $I(R^*\hat{p}) \sim m$.

Proof. This result is a consequence of Theorem 2 and Lemma 4.

Shashkin [10] investigated the \mathcal{T}_+ -determining sets for an operator from C(Q) to B(Q) where Q is a compact metric space and B(Q) is the space of bounded real-valued functions on Q with the supremum norm. He has shown: If a positive operator S has an n-dimensional \mathcal{T}_+ -determining set, then the support of the functional $S^*\hat{p}$ for each p in Q contains at most n-1 points. The proof of this result depends upon the fact that the range space is B(Q) and does not extend to the present case. Using different techniques we obtain a similar result in the more natural situation where the operator has the same domain and range.

LEMMA 6. If X is a \mathcal{T} -determining set for an operator R in \mathcal{T} , then for each p in T we have $I(R^*\hat{p}) \leq m$.

Proof. Suppose X is a \mathcal{T}_+ -determining set for R in \mathcal{T}_+ . First, we show how to define an operator S (depending on t in T) by defining $S^*\hat{p}$ for every p in T. The operator S will satisfy $I(S^*\hat{p}) \leq m + 1$ and agree with R on X and, therefore, on C. We then show $I(R^*\hat{p} \leq m)$.

Let t be a fixed, but arbitrary element of T. For each p in T we select a representation denoted by $\tau(p)$ for $(R^*\hat{p})_X$ of the form (1). Given such a representation there exists the natural extension denoted by $\sigma(p)$ to all of C of the form (2). The choice of representation (1) depends on the location of $(R^*\hat{p})_X$ as follows: If $(R^*\hat{p})_X$ is in the boundary of K, then by Theorem 3 there exists a unique representation $\tau(p)$ in X^* of the form (1) such that for

the extension $\sigma(p)$ we have $I(\sigma(p)) \leq m$. If $(R^*\hat{p})^{\dagger}_X$ is not a boundary point of K, then there exists a unique representation $\tau(p)$ of the form (1) with t in the support and $I(\sigma(p)) = m + 1$. Let S be the operator on C defined by $(Sf)(p) = (\sigma(p))(f)$.

According to the standard representation theorem (see Dunford and Schwartz [2, Theorem VI.7.1]), S is an operator in $\mathcal{B}(C)$ if

- (i) $\sup\{|\sigma(p)|: p \in T\}$ is finite;
- (ii) the map $p \mapsto \sigma(p)$ is continuous with the weak* topology of C^* .

Since X is spanned by a Chebyshev system there exists a function g in X such that g > 1. Then

$$\|\sigma(p)\| = (\sigma(p))(1) \leq (\sigma(p))(g)$$

= $(\tau(p))(g) = (R(g))(p)$ (3)
 $\leq \|Rg\| = c.$

Therefore (i) holds. This last equality defines the constant c.

We claim $\sigma(\cdot)$ is a continuous function into C^* with the weak* topology: i.e., if $p_n \to p$ in *T*, then $(\sigma(p_n))(f) \to (\sigma(p))(f)$ for all *f* in *C*. If $\tau(p)$ is in the boundary of *K*, then, since $I(\sigma(p)) \leq m$ and $(\sigma(p_n))(f) \to (\sigma(p))(f)$ for all *f* in *X*, we have, by Lemma 4 that $(\sigma(p_n))(f) \to (\sigma(p))(f)$ for all *f* in *C*.

Suppose $\tau(p)$ is not in the boundary of K. Let cB_C^* be the closed ball in C^* centered at 0 of radius c. By (3), cB_C^* contains $\{\sigma(p_n)\}$. By the Banach-Alaoglu theorem, cB_C^* is weak* compact. Hence, it is sufficient to show that the only weak* cluster point of $\{\sigma(p_n)\}$ is $\sigma(p)$. Let μ be any cluster point of $\{\sigma(p_n)\}$. Since C is separable cB_C^* is metrizable. Thus, there exists a subsequence $\{\sigma(p_n)\}$ such that $\sigma(p_n) \to \mu$ in the weak* topology of C*. It is easily seen that $I(\mu) \leq m + 1$. Since

$$\sigma(p_{n_i})_{|X} := (R^*\hat{p}_{n_i})|_X \to (R^*\hat{p})_{|X} = \sigma(p)_{|X}$$

we have $\mu_X = \sigma(p)|_X$.

We wish to show that t is in the support of μ . We assume not and arrive at a contradiction. Let

$$\sigma(p_{n_i}) = \rho(p_{n_i}) - \beta_{n_i}t$$

where $\beta_{n_j} \ge 0$ and such that *t* is not in the support of $\rho(p_{n_j})$. This is possible since $I(\sigma(p_n)) \le m + 1$. From the construction and by Theorem 3, it is easily seen that $I(\rho(p_{n_j})) \le m$.

By Urysohn's lemma there exists a nonnegative function g in C such that g(t) = 1 and $\mu(g) = 0$. Thus,

$$(\sigma(p_{n_j}))(g) = (\rho(p_{n_j}))(g) - \beta_n$$
$$- \rightarrow \mu(g) = 0.$$

Since $(\rho(p_{n_j}))(g) \ge 0$ we have $\beta_{n_j} \to 0$. As $\rho(p_{n_j}) \to \mu$ in the weak* topology, we get $I(\mu) \le m$. By Theorem 3, $\mu \mid_X = \sigma(p) \mid_X = \tau(p)$ is a boundary point of *K* which contradicts our original assumption. Hence, *t* is in the support of μ .

Since t is in the support of μ and $I(\mu) \le m - 1$, by the uniqueness of the representation $\tau(p)$ we have $\sigma(p) = \mu$. Since $\sigma(p)$ is the only limit point of $\{\sigma(p_n)\}, (ii)$ holds. By the representation theorem S is an operator in \mathscr{T} .

Since X is a \mathcal{T}_{+} -determining set for R and since $S_{-X} - R_{-X}$ we have S = R. Consequently, $I(R^*\hat{p}) = I(S^*\hat{p}) = I(\sigma(p)) \leq m + 1$ for all p in T.

Suppose there exists p in T such that $I(R^*\hat{p}) = m + 1$, i.e., $(R^*\hat{p})_X$ is in the interior of K. Let t be a point in T such that t is not in the support of $R^*\hat{p}$. Since t was arbitrary in the above argument, there exists S in \mathcal{T} such that t is in the support of $S^*\hat{p}$ and S = R. Therefore, t is in the support of $R^*\hat{p}$. This is a contradiction. The lemma is proved.

If X is not spanned by a Chebyshev system, Theorem 1 is not true as the following example shows. Let $Q = [-\pi, \pi]$ and let X be the linear span of $\{1, \sin, \cos\}$. We claim that X is a \mathcal{T}_{e} -determining set for the identity operator I on C = C(Q).

Suppose for some positive operator S in $\mathscr{B}(C)$ that $S|_X = I|_X$. For any p in $(-\pi, \pi)$ there exists a function g in X such that g(p) = 0, but g(q) > 0 for q in Q, $q \neq p$. Namely, $g(t) = 1 - \cos p \cos t - \sin p \sin t$. Since (Sg)(p) - (Ig)(p) = 0 and since $S^*\hat{p}$ is a positive functional, the support of $S^*\hat{p}$ is contained in the set $\{p\}$. However, (S1)(p) = (I1)(p) = 1. Hence, $S^*\hat{p} - \hat{p}$ for all p in $(-\pi, \pi)$. Since S is in $\mathscr{B}(C)$ we have $S^*\hat{p} = \hat{p}$ for all p in $[-\pi, \pi]$, i.e., S = I. The claim is true. However, since $\hat{\pi}|_X = (-\pi)^*|_X$ and by Theorem 2, X is not a \mathscr{T}_4 -Korovkin set for I. By the same argument we have the following corollary.

COROLLARY 7. Let Q be a compact Hausdorff space, let R be a positive operator in $\mathcal{B}(C)$ where C = C(Q), and let X be a subspace of C. If there exists a dense set P in Q such that for p in P we have that X is an \mathcal{L}_+ -determining set for $R^*\hat{p}$, then X is a \mathcal{T}_+ -determining set for R.

References

- 1. A. S. CAVARETTA, JR., A Korovkin theorem for finitely defined operators, *in* "Approximation Theory," (G. G. Lorentz, Ed.), Academic Press, New York, 1973.
- 2. N. DUNFORD AND J. T. SCHWARTZ, "Linear Operators part I: General Theory," Pure and Applied Mathematics, Vol. 7, Interscience, New York, 1958.
- 3. L. B. O. FERGUSON AND M. D. RUSK, Korovkin sets for an operator on a space of continuous functions, *Pacific J. Math.* 65, No. 2 (1976), 337–345.
- 4. R. B. HOLMES, "A Course on Optimization and Best Approximation", Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, New York, 1972.

- 5. S. KARLIN AND W. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Pure and Applied Mathematics, Vol. 15, Interscience, New York, 1966.
- 6. P. P. KOROVKIN, The conditions for the uniqueness of the problem of moments and the convergence of sequences of linear operators, (Russian) Uch. Zap. Kalininsk. Gos. Ped. Inst. 26 (1958), 95–102.
- 7. C. A. MICCHELLI, Chebyshev subspaces and convergence of positive linear operators, *Proc. Amer. Math. Soc.* 40 (1973), 448-452.
- 8. C. A. MICCHELLI, Convergence of positive linear operators on C(X), J. Approximation Theory 13 (1975), 305–315.
- 9. M. D. RUSK, "Korovkin type theorems for finitely defined operators," Dissertation, U. C. Riverside, March 1975.
- YU. A. SHASHKIN, Finitely defined linear operators in spaces of continuous functions, (Russian) Uspeki Mat. Nauk 20 (1965), No. 6 (126), 175–180.